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Abstract
A trail on the square lattice with a fixed number, k, of vertices of degree 4 is
called a k-trail. We model polymer collapse using k-trails by incorporating an
interaction energy which is proportional to the number of nearest-neighbour
contact edges of the trail. It is known that the number of square lattice n-
edge closed (open) k-trails can be bounded above and below (to O(nk)) by
the number of n-step self-avoiding circuits (walks). This along with pattern
theorems for self-interacting self-avoiding circuits and walks are used herein to
establish upper and lower bounds (to O(nk)) for the collapsing free energy of
k-trails in terms of self-avoiding circuits or walks, as appropriate. We also use
pattern theorems to obtain bounds on the limiting nearest-neighbour contact
density for collapsing k-trails. Finally, we investigate k-trails with a fixed
density of nearest-neighbour contacts and show that their limiting entropy per
monomer is independent of k.

PACS numbers: 05.50.+q, 05.70.Fh, 61.25.Hq

1. Introduction

High molecular weight polymers in dilute solution have been observed to undergo a collapse
transition as the solvent quality is reduced [1–3]. In these experiments, a linear polymer is
typically in an expanded coil state under good solvent conditions but collapses into a globular
state (minimizing monomer–solvent interactions) under poor solvent conditions. Lattice
models of polymers have been used to model and understand this transition (see [4] and
references therein). One question of interest has been determining how the collapsing free
energy and ultimately the transition temperature depend on the polymer structure [5, 6], i.e.
such as whether the polymer is linear, branched or a ring polymer. In this paper, we focus
on how the collapsing free energy depends on polymer structure in the case that the structure
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is determined by a set of planar Eulerian graphs, i.e. trails. As in the standard model for
interacting self-avoiding walks (ISAWs) [5], the models for collapse studied here incorporate
an interaction energy which is proportional to the number of nearest-neighbour contact edges
(lattice edges which are incident on two vertices of the trail but which are not edges of the
trail).

Recently [7], we focused on the number of n-step trails with a fixed number, k, of vertices
of degree 4 (k-trails) and derived combinatorial bounds relating the number of such trails
to the number of n-step self-avoiding walks or circuits. In particular, we established that
the number of square lattice n-edge closed (open) k-trails can be bounded above and below
(to O(nk)) by the number of n-step self-avoiding circuits (walks). This work extended and
improved the arguments first given by Zhao and Lookman [8] on a similar question. Zhao
and Lookman [8] also studied the collapsing free energy of closed (open) k-trails and found
bounds for the free energy in terms of that for self-avoiding circuits (walks). In this paper, we
use the arguments in [7] and the pattern theorems in [9] to establish tighter bounds (to O(nk))
between the collapsing free energy of closed (open) k-trails and that of self-avoiding circuits
(walks). These results indicate that for trails, the limiting collapsing free energy and the
collapse transition temperature, if they exist, are independent of the fixed number of vertices
of degree 4 while the collapsing free energy critical exponent, if it exists, is increased by 1 for
each vertex of degree 4.

Soteros and Whittington [10] obtained bounds on the limiting density of contacts for the
collapsing free energy of self-avoiding polygons (SAPs). We extend their arguments to k-trails
and using the pattern theorem for collapsing SAPs [9], establish new bounds on the contact
density for k-trails.

In addition, we investigate k-trails with a fixed density of contacts and show that their
limiting entropy per monomer is independent of k.

Since a trail is a walk with no repeated edges, trails can be viewed as an intermediate
model between random walks (edges and vertices can be traversed more than once) and self-
avoiding walks (no repeated vertices or edges) for incorporating the excluded volume property
into a polymer model. Based on this, another approach for investigating the collapse of
trails is one which incorporates an interaction energy which is proportional to the number of
repeated vertices (or intersections) in the trail [11–13] instead of the number of contact edges.
For closed k-trails on the square lattice, the number of repeated vertices is k while for open
k-trails it is the number of degree 3 vertices plus k (which is at most k + 2). Recent numerical
evidence [14, 15] reinforces earlier arguments [11–13] that this model of collapsing trails is
in a different universality class from ISAWs. While our model of collapsing trails cannot be
used to address this universality class issue, our results are a first step towards analysing a
two-variable model which can be used for this purpose. Such a two-variable model would
incorporate an interaction energy proportional to the number of nearest-neighbour contact
edges and an interaction energy proportional to the number of degree 4 vertices; this is similar
to a two-variable model that has been used to study lattice animal models of branched polymer
collapse [16]. However, since the two-variable model is not investigated directly in this work,
we do not discuss it further here.

In order to introduce our results more precisely, some terminology and definitions are
required first. These and a more detailed description of our results are presented next.

1.1. Terminology and statement of results

The notation used is similar to that in [7] with a focus on Z
2. For v = (v1, v2), w =

(w1, w2) ∈ R
2, define ‖v − w‖ = |v1 − w1| + |v2 − w2|. The square lattice Z

2 will be viewed
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as the infinite graph with a vertex set V (Z2) = {(x1, x2)|xi ∈ Z, i = 1, 2} and an edge set
E(Z2) = {{v,w}|v,w ∈ V (Z2), ‖v − w‖ = 1}.

An n-step self-avoiding walk (n-SAW), ω, in the square lattice is a sequence of distinct
vertices r0, r1, . . . , rn in V (Z2) such that ri−1 and ri are joined by an edge in E(Z2) for
i = 1, . . . , n. The n-SAW ω is said to start at r0 and end at rn and, for i = 1, . . . , n, the edge
from ri−1 to ri is called the ith step of the walk. The number of n-SAWs in Z

2 starting at the
origin is denoted by cn. Given a SAW ω, an edge in Z

2 which is incident on two vertices of ω

but is not a step of ω is called a contact edge of ω. The number of n-SAWs in Z
2 starting at

the origin and containing l contact edges is denoted by cn(l).
Given any n-SAW, ω, one may ignore the direction on its edges in order to obtain ω̃, the

n-step undirected self-avoiding walk (n-USAW), which is the underlying graph of ω. Two
n-USAWs are considered equivalent if one is a translate of the other. The number of distinct
n-USAWs in Z

2 is denoted by un and the number of these containing l contacts is denoted by
un(l). Note that there are exactly two possible orientations which could be chosen for ω̃ in
order to create two distinct n-SAWs. Therefore, cn = 2un and cn(l) = 2un(l).

An n-step trail, σ , in Z
2 starting at s0 is a sequence of n distinct edges α1, α2, . . . , αn in

E(Z2) such that αi = {si−1, si} for i = 1, ..., n. The n-step trail rev(σ ) ≡ (αn, αn−1, . . . , α1),
obtained by reversing the order of σ ’s edges, is referred to as the reverse trail of σ . Note that
if s0, s1, . . . , sn are distinct vertices in V (Z2), then σ is an n-SAW. The number of n-step trails
in Z

2 starting at the origin is denoted by tn and the number of n-step k-trails (trails containing k
vertices of degree 4) with l contact edges is denoted tn(k, l). An n-step closed trail or trailgon
is a trail such that s0 = sn. The number of n-step trailgons in Z

2 starting at the origin is denoted
t◦n and the number of such trailgons containing k vertices of degree 4 (k-trailgons or closed
k-trails, for short) and l contact edges is denoted t◦n(k, l). For any i = 1, . . . , n, the n-step
trailgon cycsi−1

(σ ) ≡ (αi, αi+1, . . . , αn, α1, α2, . . . , αi−1), obtained from an n-step trailgon σ

by a cyclic permutation of its edges, is referred to as the cyclic permutation of σ starting at
si−1. A trail which is not closed is called an open trail. The number of n-step open trails in
Z

2 starting at the origin is denoted by t̆n and the number of n-step open k-trails with l contact
edges is denoted t̆n(k, l).

An n-step self-avoiding circuit (n-SAC) is a trailgon such that the vertices s0, . . . , sn−1

are all distinct. The number of n-SACs in Z
2 starting at the origin is denoted by qn and

qn(l) denotes the number of these containing l contact edges. For a given n-SAC σ ,
{cycsi−1

(σ ), cycsi−1
(rev(σ )), i = 1, . . . , n} forms a set of 2n distinct n-SACs. This set of

n-SACs can be regarded as a single geometrical entity, which is called an n-edge self-avoiding
polygon (n-SAP). Equivalently an n-SAP is a connected n-edge, n-vertex subgraph of Z

2 in
which each vertex has degree 2. Two n-SAPs are considered equivalent if one is a translate
of the other. The number of distinct n-SAPs in Z

2 is denoted by pn and the number of these
containing l contact edges is denoted by pn(l). Note that qn = 2npn and qn(l) = 2npn(l).

An abstract-connected graph τ is said to be homeomorphically irreducible if it has no
vertices of degree 2, or if it has exactly one vertex, and this vertex has degree 2 (i.e. a loop
graph). Let G be the set of all homeomorphically irreducible abstract-connected planar graphs
having at least one edge and with maximum vertex degree less than or equal to 4. Given a
graph τ ∈ G, an n-tau in Z

2 is defined to be an n-edge subgraph of Z
2 which is homeomorphic

to τ (i.e., isomorphic to τ when vertices of degree 2 are suppressed). An n-SAP is considered
an embedding of the loop graph. The number of distinct (up to translation) n-taus in Z

2 is
denoted by gn(τ ) and the number of these containing l contact edges is denoted gn(τ, l).

Let Gi (k) be the subset of G consisting of graphs with i vertices of odd degree and exactly
k vertices of degree 4. For any τ ∈ G2(k) (G0(k)), Euler’s theorem [18] implies that τ contains
an open (closed) Euler trail which uses every edge of the graph exactly once and hence each
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n-tau may be converted to an open (closed) n-step trail, by finding an Euler trail of the n-tau.
We thus refer to τ ∈ G2(k) (G0(k)) as an open (closed) Eulerian graph with k vertices of
degree 4, or an open (closed) k-graph, for short. The number (up to translation) of n-edge
embeddings in Z

2 of all open k-graphs is defined by

Ĕn(k) ≡
∑

τ∈G2(k)

gn(τ ), (1.1)

while the number (up to translation) of n-edge embeddings in Z
2 of all closed k-graphs is

defined by
◦
En(k) ≡

∑
τ∈G0(k)

gn(τ ). (1.2)

Similarly, the number (up to translation) of n-edge embeddings in Z
2 of all open k-graphs with

l contacts is defined by

Ĕn(k, l) ≡
∑

τ∈G2(k)

gn(τ, l), (1.3)

and the number (up to translation) of n-edge embeddings in Z
2 of all closed k-graphs with l

contacts is defined by
◦
En(k, l) ≡

∑
τ∈G0(k)

gn(τ, l). (1.4)

Bounds relating k-trails and k-graphs were established in [7, equation (1.18)] and those
arguments lead mutatis mutandis to

2Ĕn(k, l) � t̆n(k, l) � 4(3)k+1Ĕn(k, l) (1.5)

and

2n
◦
En(k, l) �

◦
tn(k, l) � 2(3)kn

◦
En(k, l). (1.6)

Hammersley [19, 20] proved (see also [21]) that

0 < lim
n→∞ n−1 log cn = lim

n→∞ n−1 log pn ≡ log µ < log 3, (1.7)

where the second limit is taken through even values of n. Given any τ ∈ G, there exists
n > 0 such that gn(τ ) > 0 [17, section 4). Hence the arguments given in the proof of
[22, theorem 4.2] can be applied to establish that for any τ ∈ G,

0 < lim
n→∞ n−1 log gn(τ ) = log µ, (1.8)

where the limit is taken through all values of n for which gn(τ ) > 0. Hence the number of
n-taus increases exponentially with n, at a rate which is independent of τ , and at the same rate
as that for n-SAWs. Guttmann [23] proved the existence of the following limit for lattice trails
and Zhao and Lookman [8] proved the second inequality in

0 < log µ < lim
n→∞ n−1 log tn ≡ log µT . (1.9)

For each of these models, we define a collapsing free energy by introducing an interaction
energy which is proportional to the number of contact edges. In particular, we define the
following partition functions:

Pn(β) =
n∑

l=0

pn(l) eβl; Un(β) =
n+2∑
l=0

un(l) eβl; (1.10)
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Qn(β) =
n∑

l=0

qn(l) eβl; Cn(β) =
n+2∑
l=0

cn(l) eβl; (1.11)

T o
n (k, β) =

n−2k∑
l=0

ton (k, l) eβl; T̆n(k, β) =
n−2k+2∑

l=0

t̆n(k, l) eβl; (1.12)

T o
n (β) =

∑
k

T o
n (k, β); T̆n(β) =

∑
k

T̆n(k, β); (1.13)

◦
En(k, β) =

n−2k∑
l=0

◦
En(k, l) eβl; Ĕn(k, β) =

n−2k+2∑
l=0

Ĕn(k, l) eβl; (1.14)

Tn(β) =
n+2∑
l=0

tn(l) eβl; Gn(τ, β) =
n−2k+i−j∑

l=0

gn(τ, l) eβl, (1.15)

where τ ∈ G and i, j, k denote, respectively, the number of degree 1, 3, 4 vertices in τ . To get
the upper bounds for l in the above summations, note first that any n-tau of Z

2 has n−2k− 3j+i

2
degree 2 vertices (by the handshaking lemma, see, for example, [18]). Then each vertex of
degree m ∈ {1, 2, 3} is an end point of at most 4 − m contacts so that the number of contact
edge end points in a given n-tau is at most 2n − 4k + 2i − 2j and the number of contact edges
is at most n−2k + i − j (since each contact edge has two end points). For closed k-graphs and
trailgons, i = j = 0 while for open k-graphs and trails, i − j ∈ {−2, 0, 2} so that i − j � 2.

Taking the logarithm and then dividing by n for any one of the partition functions above
yields the reduced collapsing free energy per monomer for the corresponding model. It is
known that [5, 24]

lim
n→∞ n−1 log Pn(β) ≡ P(β) (1.16)

exists and is finite for all finite β. It has also been proved that

lim
n→∞ n−1 log Cn(β) = P(β) (1.17)

for all β � 0 [5, 24, 25]; however, the existence of the limit on the left-hand side has yet to be
proved to exist for β > 0. Arguments given in Zhao and Lookman [8] lead to

lim
n→∞ n−1 log gn

(
τ 0
k , β

) = lim
n→∞ n−1 log T o

n (k, β) = P(β) (1.18)

for all β, and to

lim
n→∞ n−1 log gn

(
τ 2
k , β

) = lim
n→∞ n−1 log T̆n(k, β) = P(β) (1.19)

for β � 0, where (as in [7]) τ i
k ∈ Gi (k) is a k-loop daisy graph (see figure 1(b)) when i = 0

and a k-loop twin-tailed tadpole graph (see figure 1(a)) when i = 2, with i referring to the
number of odd degree vertices in the graph.

In [7] it was established that there exist positive constants ε, C̃, D̃, C,D0,D,Nε such
that for all n � Nε and for any k � 0,

C̃

(�εn�
k

)
pn � gn

(
τ 0
k

)
�

◦
En(k) � Ck

(
2n

k

)
pn, (1.20)

and

D̃

(�εn�
k

)
cn � gn

(
τ 2
k

)
� Ĕn(k) � D0(D)k

(
2n

k

)
cn, (1.21)

where the lower bounds hold for all Z
d with d � 2 and the upper bounds hold for d = 2.
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(a) (b)

Figure 1. (a) An example of a k-loop twin-tailed tadpole (τ 2
k ), with k = 4. (b) An example of a

k-loop daisy (τ 0
k ), with k = 7.

In this paper, we use the arguments that lead to the above result along with the new pattern

theorems for SAWs and SAPs in Z
2 [9] to establish bounds to O(nk) for

◦
En(k, β) and Ĕn(k, β)

in terms of Pn(β) and Cn(β), respectively. In particular, we establish the following results.
Given any fixed β ∈ R, there exist positive constants ε > 0, N > 0,D0(β) > 0,D(β) >

0 and D′(β) > 0 such that for any integers k � 0 and n � N ,
1

2

(�εn�
k

)
Pn(β) � Gn

(
τ 0
k , β

)
�

◦
En(k, β) � (D(β))k

(
2n

k

)
Pn(β) (1.22)

and, for β � 0,
1

4

(�εn�
k

)
Cn(β) � Gn

(
τ 2
k , β

)
� Ĕn(k, β) � D0(β)(D′(β))k

(
2n

k

)
Cn(β). (1.23)

Now applying equations (1.5) and (1.6) leads to the following results for closed and open
k-trails:
1

2

(�εn�
k

)
Qn(β) � 2nGn

(
τ 0
k , β

)
�

◦
T n(k, β) � (3D(β))k

(
2n

k

)
Qn(β) (1.24)

and, for β � 0,
1

2

(�εn�
k

)
Cn(β) � 2Gn

(
τ 2
k , β

)
� T̆n(k, β) � 12D0(β)(3D′(β))k

(
2n

k

)
Cn(β), (1.25)

where the constants are as defined in equations (1.22) and (1.23).
Hence, given any β ∈ R, we have that

◦
T n(k, β) = �(nkQn(β)) = �(n

◦
En(k, β)) = �(nk+1Pn(β)) (1.26)

and, for β � 0,

T̆n(k, β) = �(nkCn(β)) = �(Ĕn(k, β)) = �(nkUn(β)), (1.27)

where we define the notation fn = �(gn) to mean that there exist constants (independent of n)
A,B,N � 0 such that Agn � fn � Bgn for all n � N . It is generally believed, for example,
that Pn(β) = �(nθ(β)eP(β)n), with collapsing free energy critical exponent θ(β). Hence our
results indicate that this critical exponent, if it exists, goes up by 1 for each vertex of degree 4
in the k-trail or k-graph.

We also use the pattern theorem for collapsing n-SAPs [9] to obtain bounds on the
average n-SAP contact density, 〈l〉β/n. For example, we show that there exist 1 > ε1 > 0 and
1 > ε2 > 0 such that if P(β) is differentiable at β ∈ R then

ε1 � P ′(β) = lim
n→∞

〈l〉β
n

� 1 − ε2. (1.28)

Then, using equations (1.18) and (1.19) this can be extended to yield the same conclusion
regarding the average contact density for collapsing k-graphs and k-trails.
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Finally, we investigate k-graphs with a fixed density of contacts. Here we show that the
limiting entropy per monomer is independent of k.

The remainder of the paper is organized as follows. The upper and lower bounds of
equations (1.22) and (1.23) on the collapsing free energies of k-graphs are derived in the
following section. In the third section the results concerning the density of contacts are
presented. In the last section, the properties of k-graphs with a fixed density of contacts are
explored.

2. Main results on the collapsing free energy of k-graphs

2.1. Upper bounds

James and Soteros [7, lemma 7] proved that, there exists M > 0 such that given any
n > 0, k � 0, τ ∈ G0(k) and any n-tau, σ , with l contacts, there is a map 	 which takes σ

to a triple (ω̃, 
, T ) where ω̃ is a polygon which only differs from σ in up to k square boxes
of side length M. Hence ω̃ has l′ contacts for some l′ such that l − kA � l′ � l + kA, where
A = 2(M + 1)(M + 2) is the number of edges contained inside or touching the boundary
of a square box of side length M. Using this and following the proof of [7, lemma 10], one

obtains the upper bound for
◦
En(k, l) stated below in equation (2.1). From this one can obtain

an upper bound for
◦
En(k, β), the partition function for n-edge closed k-graphs, as defined in

equation (1.14).

Lemma 1. There exists a constant C > 1, such that for all k � 0, n � 1 and l � 0

◦
En(k, l) � Ck

(
2n

k

) n∑
m=n−4k

l+kA∑
l′=l−kA

pm(l′), (2.1)

and hence, given any fixed β ∈ R, there exists a constant D(β) > 0 such that for all k � 0
and n � 1,

◦
En(k, β) =

n−2k∑
l=0

◦
En(k, l)eβl � (D(β))k

(
2n

k

)
Pn(β). (2.2)

Proof. As discussed above, equation (2.1) follows directly from [7, lemma 7] and the proof
of [7, lemma 10]. Summing over l on both sides of equation (2.1) gives the following results:

◦
En(k, β) =

n−2k∑
l=0

◦
En(k, l) eβl � Ck

(
2n

k

) n−2k∑
l=0

n∑
m=n−4k

l+kA∑
l′=l−kA

pm(l′) eβl

= Ck

(
2n

k

) n−2k∑
l=0

n∑
m=n−4k

2kA∑
j=0

pm(j + l − kA) eβl

= Ck

(
2n

k

) n∑
m=n−4k

2kA∑
j=0

eβ(kA−j)

n−2k∑
l=0

pm(j + l − kA) eβ(j+l−kA)

� Ck

(
2n

k

) n∑
m=n−4k

2kA∑
j=0

eβ(kA−j)Pm(β)

= Ck

(
2n

k

)(
n∑

m=n−4k

Pm(β)

)
2kA∑
j=0

eβ(kA−j). (2.3)
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A standard concatenation of a unit square onto the bottom most of the left-most edges of a
polygon leads to

p
N−2(l) � p

N
(l + 1) (2.4)

for any even integer N � 6. This, in turn, implies that P
N−2s

(β) � e−sβP
N
(β), for any choice

of integers s and N (N even) such that N − 2s � 4 and s � 0. Therefore, equation (2.3) is
bounded as follows:

◦
En(k, β) � Ck

(
2n

k

) (
Pn(β)

2k∑
s=0

e−sβ

)
2kA∑
j=0

eβ(kA−j)

= Ck

(
2n

k

)
Pn(β)

2k∑
s=0

2kA∑
j=0

e−β(s+j−kA). (2.5)

Next, because the quantity s + j is not larger in magnitude than 2k + 2kA, we have
that |s + j − kA| � k(A + 2), and hence |β(s + j − kA)| � |β|k(A + 2). Therefore,
e−β(s+j−kA) � e|β(s+j−kA)| � e|β|k(A+2), which allows the last term of the inequality in (2.5) to
be bounded as follows:

◦
En(k, β) � Ck

(
2n

k

)
Pn(β)

2k∑
s=0

2kA∑
j=0

e|β|k(A+2)

= Ck

(
2n

k

)
Pn(β)(2k + 1)(2kA + 1) e|β|k(A+2)

� Ck

(
2n

k

)
Pn(β)(12)k(2A + 1)k e|β|k(A+2)

� (D(β))k
(

2n

k

)
Pn(β), (2.6)

where D(β) � 12C e|β|(A+2)(2A + 1). The second-to-last inequality in equation (2.6) is found
as follows. First, observe that the function y = log(x)

x
is bounded above by its maximum value

of 1/e (obtained at x = e). Therefore,

log(a + 1) + log(k) � k(log(a + 1) + 1/e), for any a > 0, k � 1. (2.7)

By exponentiating both sides of equation (2.7) and using e1/e � 2, it follows that:

ak + 1 � (a + 1)k � (2(a + 1))k, for any a > 0, k � 1. (2.8)

In fact, note that the inequality involving the left-most and right-most ends of equation (2.8)
holds true for k = 0, as well. In other words,

ak + 1 � (2(a + 1))k, for any a > 0 and for any integer k � 0. (2.9)

In particular, we conclude from equation (2.9) that 2k + 1 is bounded above by 6k and 2kA + 1
is bounded above by (2(2A + 1))k , for all integers k � 0, as desired. �

In exactly the same way as described for lemma 1, we may obtain the following
upper bound for Ĕn(k, β), the partition function for n-edge open k-graphs, as defined in
equation (1.14).

Lemma 2. There exist constants D0 > 0 and D > 1, such that for all k � 0, n � 1 and l � 0

Ĕn(k, l) � D0(D)k
(

2n

k

) n∑
m=n−220k−2

l+kA∑
l′=l−kA

cm(l′), (2.10)
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and hence, given any fixed β ∈ R, there exist constants D0(β) > 0 and D(β) > 0 such that
for all k � 0 and n � 1,

Ĕn(k, β) =
n−2k+2∑

l=0

Ĕn(k, l) eβl � D0(β)(D′(β))k
(

2n

k

)
Cn(β). (2.11)

Proof. For this case, equation (2.10) follows directly from [7, lemma 8] and the proof of [7,
lemma 11]. Next, the steps given in equation (2.3) work the same way for SAWs as for SAPs.
Thus, we have the following inequality, which corresponds to the last line in equation (2.3):

Ĕn(k, β) =
n−2k+2∑

l=0

Ĕn(k, l) eβl � D0D
k

(
2n

k

) (
n∑

m=n−220k−2

Cm(β)

)
2kA∑
j=0

eβ(kA−j). (2.12)

Now, given any (N − 2)-SAW with l contacts, let e denote the bottom most of its left-most
edges. If e is horizontal (vertical), then a concatenation of a horizontal 2-SAW (a unit square)
onto the (N − 2)-SAW at e can be used to obtain a unique N-SAW with l (l + 1) contacts.
Thus, we have

c
N−2(l) � c

N
(l + 1) + c

N
(l). (2.13)

In turn, this gives

CN−2(β) � (1 + e−β)CN(β). (2.14)

Repeated applications of equation (2.14) gives, for any nonnegative integer, t � 0:

CN−2t (β) � (1 + e−β)tCN(β). (2.15)

Thus, equation (2.15) can be used to bound equation (2.12) as follows:

Ĕn(k, β) � D0D
k

(
2n

k

) (
n∑

m=n−220k−2

Cm(β)

)
2kA∑
j=0

eβ(kA−j)

= D0D
k

(
2n

k

)(
2(110k+1)∑

s=0

Cn−s(β)

)
2kA∑
j=0

eβ(kA−j)

� D0D
k

(
2n

k

) (
110k+1∑

t=0

(Cn+1−2t (β) + Cn−2t (β))

)
2kA∑
j=0

eβ(kA−j)

� D0D
k

(
2n

k

)
[Cn+1(β) + Cn(β)]

110k+1∑
t=0

(1 + e−β)t
2kA∑
j=0

eβ(kA−j). (2.16)

Note next that removing the last edge of an (n+ 1)-SAW with l contacts yields an n-SAW with
l − i contacts for some i ∈ {0, 1, 2, 3}. Since at most three distinct (n + 1)-SAWs will result
in the same n-SAW, this argument leads to

cn+1(l) � 3[cn(l) + cn(l − 1) + cn(l − 2) + cn(l − 3)]. (2.17)

Therefore, we have the following bound:

Cn+1(β) � 3Cn(β)(1 + eβ + e2β + e3β). (2.18)

We can use equation (2.18) to bound equation (2.16) as follows:

Ĕn(k, β) � D0D
k

(
2n

k

)
Cn(β)

[
1 + 3

3∑
s=0

esβ

]
110k+1∑

t=0

(1 + e−β)t
2kA∑
j=0

eβ(kA−j)

� D0D
k

(
2n

k

)
Cn(β)[13 e3|β|](110k + 2)(2 e|β|)110k+1

2kA∑
j=0

eβ(kA−j), (2.19)
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where the final bound in equation (2.19) is found by noting that 1 + 3
∑3

s=0 esβ �
1 + 3

∑3
s=0 e3|β| � 1 + 12 e3|β| � 13 e3|β| and that (1 + e−β)t � (1 + e|β|)110k+1 � (2 e|β|)110k+1.

Next, by equation (2.9), 110k + 2 � 1 + (222)k � 2(222)k . Therefore, we may bound
equation (2.19) as follows:

Ĕn(k, β) � D0D
k

(
2n

k

)
Cn(β)52 e4|β|[222(2110) e110|β|]k

2kA∑
j=0

eβ(kA−j). (2.20)

Finally, we may bound equation (2.20) by first observing that, because 0 � j � 2kA, we have
eβ(kA−j) � e|β|kA, and then applying equation (2.9) yields

Ĕn(k, β) � D0D
k

(
2n

k

)
Cn(β)52 e4|β|(222(2110) e110|β|)k(2kA + 1) e|β|kA

� D0D
k

(
2n

k

)
Cn(β)52 e4|β|(444(2110) e110|β|)k(2A + 1)k e|β|kA

� D0(β)(D′(β))k
(

2n

k

)
Cn(β), (2.21)

where D0(β) � D052 e4|β| and D′(β) � 444D2110 e(110+A)|β|(2A + 1). This yields the desired
bound. �

2.2. Lower bounds

We next wish to obtain appropriate lower bounds for
◦
En(k, β) and for Ĕn(k, β). We will rely

on the new pattern theorems for SAPs and SAWs derived recently in [9] and refer the reader to
this reference for a definition of the term pattern for SAPs or SAWs (but for examples of proper
SAP patterns see figure 2). It is also necessary to introduce some new notation here. First, let
P denote a fixed pattern that can occur in a SAP. Given P, let pn(�m,P, l) denote the number
of n-edge SAPs having l contacts and containing at most m translates of the pattern P. Also,
let pn(>m,P, l) denote the number of n-edge SAPs having l contacts and containing more
than m translates of the pattern P. The notation cn(�m,P, l) and cn(>m,P, l) is used mutatis
mutandis for SAWs. Also, for any ε > 0, define Cn(β, ε, P ) ≡ ∑

l cn(>�εn�, P , l) eβl

to be the partition function for self-interacting n-SAWs with more than �εn� copies of the
pattern, P.

Using the pattern theorems of [9] combined with arguments similar to those described
in [7, section 3] and a judicious choice of pattern P = (P1, P2) (see figure 2(a)), we obtain
the following lemmas for SAPs and SAWs. (Note that P is chosen so that both the number
of edges and the number of contacts remain unchanged during the L-to-loop transformation
depicted in figure 2(a).)

Lemma 3. Given any fixed β ∈ R there exists an ε > 0 and an N > 0 such that for any
integer k � 0 and any integer n � N , the following inequality holds:

1

2

(�εn�
k

)
Pn(β) �

◦
En(k, β). (2.22)

Lemma 4. Let P be the pattern as defined in figure 2(a). Given any fixed β ∈ R, any ε > 0
and any n > 0, the following inequality holds:

1

2

(�εn�
k

)
Cn(β, ε, P ) � Ĕn(k, β). (2.23)
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(a)

(b)

Figure 2. (a) Pattern P is defined on the left. The result of the ‘L-to-loop transformation’ (needed
for the proofs of lemmas 3 and 4) is shown on the right. P = (P1, P2), where P1 is the L-shaped
set of solid vertices and edges and P2 is given by the empty circles surrounding the L-shape. P2
has been chosen so that no contacts are created or destroyed during the transformation. Solid
lines represent edges which are occupied. Solid (empty) circles represent vertices which are
occupied (unoccupied). Double hash-marks represent edges which have been removed during the
transformation. (b) Pattern P̂ used in section 3 is shown here.

Furthermore, for any finite nonpositive β � 0 there exists an εP > 0 and an NP > 0 such
that for any integer k � 0 and any integer n � NP , the following inequality holds:

1

4

(�εP n�
k

)
Cn(β) � Ĕn(k, β). (2.24)

In order to prove lemmas 3 and 4, the following two theorems from [9] and their
corresponding corollaries are needed.

Theorem 1 (James and Soteros [9]). Given any proper SAP pattern P = (P1, P2) in Z
2 and

any finite β, there exists an εP > 0 such that

lim sup
n→∞

1

n
log

∑
l

pn(� �εP n�, P , l) eβl < P(β). (2.25)

As a consequence of this and equation (1.16), the arguments given by Sumners and
Whittington [26], equations (3.8) and (3.9) lead to the following corollaries.

Corollary 1. Given any proper SAP pattern P = (P1, P2) in Z
2 and any finite β, there exists

an εP > 0 such that

lim
n→∞

∑
l pn(>�εP n�, P , l) eβl

Pn(β)
= 1. (2.26)

Corollary 2. Given any proper SAP pattern P = (P1, P2) in Z
2 and any finite β, there exists

an εP > 0 and MP > 0 such that for all n � MP ,

1

2
Pn(β) �

∑
l

pn(>�εP n�, P , l) eβl . (2.27)
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As mentioned above, the proof for corollary 1 is the same as that given in [26,
equations (3.8) and (3.9)]. The crux of this proof, however, occurs in the bound given in [26,
equation (3.8)] and depends on the known asymptotic behaviour of the denominator term in
equation (2.26). In other words, the proof works because we know that limn→∞ n−1 log Pn(β)

exists and is equal to the finite value, P(β), for any finite β (see equation (1.16)).
So far, the corresponding corollaries for SAWs, stated next, are only proved for nonpositive

β. This is because the asymptotic behaviour for the denominator, in the SAW case, is not known
for positive β. In other words, it has only been proved for β � 0 that limn→∞ n−1 log Cn(β)

exists and is equal to the finite value, P(β) (see equation (1.17)).

Theorem 2 (James and Soteros [9]). Given any proper SAP pattern P = (P1, P2) in Z
2 and

any finite β, there exists an εP > 0 such that

lim sup
n→∞

1

n
log

∑
l

cn(��εP n�, P , l) eβl < lim sup
n→∞

1

n
log Cn(β). (2.28)

Corollary 3. Given any proper SAP pattern P = (P1, P2) in Z
2 and any finite nonpositive

β � 0, there exists an εP > 0 such that

lim
n→∞

∑
l cn(>�εP n�, P , l) eβl

Cn(β)
= 1. (2.29)

Corollary 4. Given any proper SAP pattern P = (P1, P2) in Z
2 and any finite nonpositive

β � 0, there exists an εP > 0 and NP > 0 such that for all n � NP ,

1

2
Cn(β) �

∑
l

cn(>�εP n�, P , l) eβl = Cn(β, εP , P ). (2.30)

We now prove lemma 3 and then lemma 4.

Lemma 3

Proof. Fix any β ∈ R and let P = (P1, P2) be the proper pattern shown on the left side of
figure 2(a). Let MP > 0 and εP > 0 be as required for the result of corollary 2. Using the
L-to-loop transformation shown in figure 2(a) and the arguments given in [7, section 3], given
any n � MP and m > �εP n�, we convert any n-SAP containing m translates of P into an
n-edge k-daisy graph in

(
m

k

)
>

(�εP n�
k

)
possible ways, without changing the number of edges or

the number of contacts in the graph. We thus obtain the following lower bound for
◦
En(k, l),

the number of n-edge closed k-graphs with l contacts. For any k � 0 and n � MP ,(�εP n�
k

)
pn(>�εP n�, P , l) � gn

(
τ 0
k , l

)
�

∑
τ∈G0(k)

gn(τ, l)

= ◦
En(k, l). (2.31)

Next, multiply equation (2.31) by eβl , sum over all the choices for l, and apply corollary 2 to
make the following lower bound estimate. For any k � 0 and n � MP ,

1

2

(�εP n�
k

) ∑
l

pn(l) eβl �
(�εP n�

k

) ∑
l

pn(>�εP n�, P , l) eβl

�
∑

l

gn

(
τ 0
k , l

)
eβl
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�
∑

l

∑
τ∈G0(k)

gn(τ, l) eβl

=
∑

l

◦
En(k, l) eβl . (2.32)

This is the lower bound inequality, as promised in lemma 3. �

Lemma 4

Proof. Fix any β ∈ R and any ε > 0 and let P = (P1, P2) be the proper pattern shown on
the left side of figure 2(a). Using the L-to-loop transformation shown in figure 2(a) and the
arguments given in [7, section 3], given any n � 0 and m > �εn�, we convert any n-USAW
containing m translates of P into an n-edge k-loop twin-tailed tadpole graph in

(
m

k

)
>

(�εn�
k

)
possible ways, without changing the number of edges or the number of contacts in the graph.
We thus obtain the following lower bound for Ĕn(k, l), the number of n-edge open k-graphs
with l contacts. For any n and k � 0,(�εn�

k

) (
1

2

)
cn(>�εn�, P , l) � gn

(
τ 2
k , l

)
�

∑
τ∈G2(k)

gn(τ, l)

= Ĕn(k, l). (2.33)

Note that the number of n-USAWs is equal to half the number of n-SAWs, hence the factor of
1/2 given in the inequality in (2.33). Next, multiply equation (2.33) by eβl and sum over all
the choices for l, to obtain the following lower bound estimate. For any n and k � 0,(�εn�

k

) (
1

2

) ∑
l

cn(>�εn�, P , l) eβl �
∑

l

gn

(
τ 2
k , l

)
eβl

�
∑

l

∑
τ∈G2(k)

gn(τ, l) eβl

=
∑

l

Ĕn(k, l) eβl . (2.34)

Therefore, for any n and k � 0,

1

2

(�εn�
k

)
Cn(β, ε, P ) � Ĕn(k, β), (2.35)

which guarantees the first lower bound promised in lemma 4. In particular, for β � 0, let
εP > 0 and NP > 0 be as required for the result of corollary 4. Then we have for k � 0 and
all n � NP ,

1

4

(�εP n�
k

)
Cn(β) � 1

2

(�εP n�
k

)
Cn(β, εP , P ) � Ĕn(k, β). (2.36)

This is the second lower bound inequality, as promised in lemma 4. �

2.3. Combining the upper and lower bounds

Thus for fixed β and k, lemmas 1 and 3 and the asymptotic properties of
(
αn

k

)
(see, for example,

[27, equation (2.16)]), imply that
◦
En(k, β) = �(nkPn(β)), (2.37)
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i.e. there exists constants (independent of n) A,B,N such that for all n � N,AnkPn(β) �
◦
En(k, β) � BnkPn(β).

Furthermore, given a fixed β such that the limiting free energy of walks exists, and a fixed
k we also have by lemmas 2 and 4 that

Ĕn(k, β) = �(nkCn(β)), (2.38)

i.e. there exists constants A′, B ′, N ′ such that for all n � N ′, A′nkCn(β) � Ĕn(k, β) �
B ′nkCn(β).

3. The density of contacts in collapsing k-graphs

Given any β ∈ R and integers n, k � 0, we investigate next the asymptotic properties of
the average number of contacts per vertex, the contact density, for closed and open k-graphs,
respectively:

〈l〉n,k,0,β

n
= 1

n

∑
l l

◦
En(k, l) eβl

◦
En(k, β)

(3.1)

〈l〉n,k,2,β

n
= 1

n

∑
l lĔn(k, l) eβl

Ĕn(k, β)
. (3.2)

The proof of [10, corollary 4] combined with equations (1.18) and (1.19) lead immediately to
the following result.

Corollary 5. Consider any finite β∗ and any integer k � 0. If β∗ > 0, consider i = 0 and
otherwise consider any i ∈ {0, 2}.

If P(β) is differentiable at β = β∗, then

0 < lim
n→∞

〈l〉n,k,i,β∗

n
= P ′(β∗) < 1, (3.3)

i.e. the limiting density exists, is strictly positive and less than 1, and is independent of i and
k. Otherwise, the left and right derivatives exist at β = β∗ and

0 < lim
β→(β∗)−

P ′(β) � lim inf
n→∞

〈l〉n,k,i,β∗

n
< lim sup

n→∞

〈l〉n,k,i,β∗

n
� lim

β→(β∗)+
P ′(β) < 1. (3.4)

In this section we use the pattern theorem, theorem 1, to derive this result by an alternate
approach, and we obtain further bounds on

〈l〉n,0,0,β

n
.

Consider patterns P and P̂ as in figures 2(a) and (b), respectively. We focus on the case
i = 0 and k = 0. Given any fixed β∗ ∈ R, let εP and εP̂ be as required for the results of
theorem 1.

Note that an n-SAP containing more than �εP̂ n� translates of P̂ must contain at least
�εP̂ n� contacts (one for each translate). Hence, for β = β∗ and n � MP̂ (as needed for
corollary 2), ∑

l

lpn(l) eβl (3.5)

=
∑

l��εP̂ n�
lpn(l) eβl +

∑
l>�εP̂ n�

lpn(l) eβl (3.6)
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� �εP̂ n�
∑

l>�εP̂ n�
pn(l) eβl (3.7)

� �εP̂ n�
∑

l

pn(>�εP̂ n�, P̂ , l) eβl � �εP̂ n�
2

Pn(β), (3.8)

where the last inequality follows from corollary 2. Thus for β = β∗ and any n � MP̂

〈l〉n,0,0,β∗

n
� �εP̂ n�

2n
. (3.9)

For an upper bound, note first that for any square lattice n-SAP with s solvent-contact
edges (edges from a polygon vertex to a vertex not part of the polygon) and l contact edges
we have (see, for example, [28])

s + 2l = 2n. (3.10)

Each occurrence of P contributes at least 12 distinct solvent-contact edges, hence an n-SAP
containing more than �εP n� translates of P contains at most (n − 6�εP n�) contact edges.
Define ε2 = min{εP , 1/6} < 1, and hence pn(l) � pn(>�ε2n�, P , l) � pn(>�εP n�, P , l) so
that corollaries 1 and 2 hold for

∑
l pn(>�ε2n�, P , l) eβ∗l . Thus, for β = β∗,

∑
l

lpn(>�ε2n�, P , l) eβl =
n−6�ε2n�∑

l=0

lpn(>�ε2n�, P , l) eβl (3.11)

� (n − 6�ε2n�)
∑

l

pn(>�ε2n�, P , l) eβl, (3.12)

and thus ∑
l lpn(>�ε2n�, P , l) eβ∗l∑
l pn(>�ε2n�, P , l) eβ∗l � (n − 6�ε2n�). (3.13)

As discussed in the proof of [10, corollary 4], if P(β) is differentiable at β = β∗ then the
order of the differentiation and the limit as n goes to infinity can be interchanged. Thus

P ′(β∗) = d

dβ
lim

n→∞ n−1 log Pn(β)

∣∣∣∣
β=β∗

(3.14)

= d

dβ
lim

n→∞ n−1 log
∑

l

pn(>�ε2n�, P , l) eβl

∣∣∣∣∣
β=β∗

(3.15)

= lim
n→∞ n−1 d

dβ
log

∑
l

pn(>�ε2n�, P , l) eβl

∣∣∣∣∣
β=β∗

(3.16)

= lim
n→∞ n−1

∑
l lpn(>�ε2n�, P , l) eβ∗l∑
l pn(>�ε2n�, P , l) eβ∗l (3.17)

� lim
n→∞ n−1(n − 6�ε2n�) = 1 − 6ε2, (3.18)

where for equation (3.15) we have used corollary 1. Combining this upper bound with
equation (3.9) yields

ε1 � lim
n→∞

〈l〉n,0,0,β∗

n
= P ′(β∗) � 1 − 6ε2, (3.19)

where ε1 = εP̂ /2.
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Using equations (1.18) and (1.19), the conclusions from equation (3.19) are now
essentially the same as the conclusions of corollary 5, however, the arguments above provide
an alternate approach for determining the bounds and, at least in the case of equation (3.9),
also give bounds on the density of contacts at finite n for SAPs.

4. Closed k-graphs with a fixed density of contacts

Given k and 0 � α � 1 fixed, we define a new function

φn(k, α) = ◦
En(k, �αn�). (4.1)

φn(k, α) is thus the number (up to translation) of n-edge closed k-graphs with a fixed limiting
(as n → ∞) contact density α. We are interested in the existence and other properties of the
limiting entropy per monomer at fixed density α given by

κ(k, α) ≡ lim
n→∞

1

n
log φn(k, α). (4.2)

For k = 0 (SAPs), Soteros and Whittington [10, section 4] established that the following limit
exists and is a concave function of α,

κ(0, α) ≡ lim
n→∞

1

n
log φn(0, α) = lim

n→∞
1

n
log pn(�αn�). (4.3)

In many cases [4, 27], the limiting collapsing free energy can be connected to the limiting
entropy per monomer at a fixed density through the Legendre transform. Since the limiting
collapsing free energy is independent of k, we thus expect that the limiting entropy per
monomer at a fixed density will also be independent of k. We show next that this is in fact the
case.

For an appropriate upper bound we note that, by combining equations (2.1) and (2.4),
there exist constants A > 0 and C > 0 such that for all k � 0, l � 0 and n � 0

◦
En(k, l) � Ck

(
2n

k

) n∑
m=n−4k

l+kA∑
l′=l−kA

pm(l′) = Ck

(
2n

k

) 2k∑
s=0

l+kA∑
l′=l−kA

pn−2s(l
′) (4.4)

� Ck

(
2n

k

) 2k∑
s=0

l+kA∑
l′=l−kA

pn(l
′ + s). (4.5)

For a lower bound, consider any fixed 0-contact embedding, σ , of a k-loop daisy and let
m be the number of edges in σ . Now consider any (l − 2)-contact (n − m)-edge polygon ω.
Let e1 be the top most of the right-most edges of σ and e2 be the bottom most of the left-most
edges of ω. Translate ω so that e2 is exactly one lattice unit to the right of e1. Now concatenate
σ and ω, by deleting e1 and e2 and adding in two new horizontal edges, to create an l-contact
n-edge k-graph. Since ω is arbitrary and the result of the transformation is unique, this gives
the bound

pn−m(l − 2) �
◦
En(k, l), (4.6)

where m is fixed and n � m > 0, l � 2.
Thus there exist constants m > 0, A > 0 and C > 0, such that for all k � 0, l � 2 and

n � m

pn−m(l − 2) �
◦
En(k, l) � Ck

(
2n

k

)
(2k + 1)(2kA + 1) max

l−kA�l′�l+k(A+2)
pn(l

′). (4.7)
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Setting l = �αn� in equation (4.7), taking logarithms, dividing by n and then taking the
limit as n → ∞, yields

κ(k, α) = lim
n→∞ n−1 log

◦
En(k, �αn�) = lim

n→∞ n−1 log φn(k, α) = κ(0, α), (4.8)

where we have used the following lemma.

Lemma 5. Let ln ∈ [0, n] be a sequence of integers such that limn→∞ln/n = α with
α ∈ (0, 1). Then

lim
n→∞ n−1 log pn(ln) = κ(0, α). (4.9)

Proof. This follows from [4, theorem 3.6] and the fact that rn(l) ≡ [1 + pn(l − 2)]/5, for
2 � l � n, satisfies [4, assumptions 3.1] (see also [10, 27]). �

Equation (4.4) gives an appropriate upper bound for establishing that φn(k, α) =
O(nkφn(0, α)). We expect that an appropriate lower bound can be established to yield
φn(k, α) = �(nkφn(0, α)), but this is left for future work.
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